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Abstract 
Inspired by explanations of machine learning concepts in 
children’s books, we developed an approach to introduce su-
pervised, unsupervised, and reinforcement learning using a 
block-based programming language in combination with the 
benefits of educational robotics. Instead of using blocks as 
high-end APIs to access AI cloud services or to reproduce the 
machine learning algorithms, we use them as a means to put 
the student “in the algorithm’s shoes.” We adapt the training 
of neural networks, Q-learning, and k-means algorithms to a 
design and format suitable for children and equip the students 
with hands-on tools for playful experimentation. The children 
learn about direct supervision by modifying the weights in 
the neural networks and immediately observing the effects on 
the simulated robot. Following the ideas of constructionism, 
they experience how the algorithms and underlying machine 
learning concepts work in practice. We conducted and eval-
uated this approach with students in primary, middle, and 
high school. All the age groups perceived the topics to be 
very easy to moderately hard to grasp. Younger students ex-
perienced direct supervision as challenging, whereas they 
found Q-learning and k-means algorithms much more acces-
sible. Most high-school students could cope with all the top-
ics without particular difficulties. 

Introduction   
The guidelines and concrete proposals for AI curricula pay 
special attention to the technological aspects of AI, espe-
cially to machine learning (Sloman 2009; Blakeley and 
Breazeal 2019; Clarke 2019; Touretzky et al. 2019; Long 
and Magerko 2020; Wong et al. 2020). Children of all lev-
els, from primary to high school, are expected to be able to 
cope with the central paradigms of machine learning: super-
vised, unsupervised, and reinforcement learning (Williams 
et al. 2019; Kahn et al. 2018; Jatzlau et al. 2019; Michaeli, 
Seegerer, and Romeike 2020). Lin et al. (2020) and Hitron 
et al. (2019) argue that understanding the concrete processes 
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is particularly crucial in creating the proper mental models 
and avoiding misconceptions. However, few approaches fo-
cus on making the technical part of machine learning tangi-
ble for young learners (Williams, Park, and Breazeal 2019; 
Williams et al. 2019; Lin et al. 2020). Most current ap-
proaches either resemble a black box or are complicated and 
thus inaccessible to primary- or middle-school students 
(Jatzlau et al. 2019). 

With our approach, we seek to fill this gap. Inspired by 
narrative techniques, designs of children’s books, and the 
advantages of educational robotics and visual programming 
languages, we developed two extensions1 for the open-
source platform Open Roberta Labi: 
•  The Neural Network Playground allows the user to exper-

iment with simple neural networks. The student can train 
the network by modifying the weights and directly ob-
serving the effects on the simulated robot until it behaves 
as desired. In this way, the student grasps the concept of 
direct supervision – a process of adjusting the weights in 
the neural network until the output is satisfactory. 

•  With the Q-learning Playground, the student can tinker 
with the Q-learning algorithm by creating unique learning 
environments for the robot and playing with the parame-
ters of the algorithm. Step by step, the student can debug 
the algorithm and explore how it is learning from the 
agent’s perspective. 
We also developed an unplugged activity to make unsu-

pervised learning tangible by adapting the k-means algo-
rithm. Our extensions are accompanied by a curriculum, 
which introduces young learners to the respective machine 
learning paradigms.  

We tested our developments with 24 participants as rep-
resentatives of three education levels: primary, middle, and 
high school. In the evaluation, we examined how children 

1 Codes, learning materials, and a video demonstrating the functionality of 
the extensions are available at github.com/vlebedynska/openroberta-lab/, 
retrieved: 17.12.2020. 
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of different ages perceived the topics and whether they had 
difficulties in understanding them. 

In this paper, we first discuss the related work on the in-
troduction of machine learning in schools as well as back-
ground studies on the use of robots, simulation, and playful 
learning in education. We then present design principles that 
guided us in developing the extensions and the curriculum. 
We continue with a presentation of the extensions and sup-
plementary materials and describe our evaluation methods. 
In the end, we provide insights into the user study, summa-
rize the children’s feedback and discuss the results. 

Background and Related Work 

Machine Learning in Schools 
Although there is a wide range of easy-to-use services intro-
ducing beginners to supervised machine learning, they usu-
ally use only a limited number of descriptive examples, such 
as image, text, sound classification (Teachable Machines, 
Machine Learning for Kids), or speech synthesis (Cogni-
mates)ii. The main disadvantage of using such applications 
in education is that the mechanisms underlying training and 
classification remain hidden from the user (Hitron et al. 
2019; Jatzlau et al. 2019). The children play with high-end 
systems and ready-trained models, with no opportunity to 
learn how the training is performed and how algorithms 
work behind the scenes. There have been increasing efforts 
to open the black box of supervised learning using visual 
programming languages. However, even then, these often 
either provide an interface to powerful high-end APIs 
(Druga 2018) or reproduce the underlying concepts without 
adapting them for the young learner. The proposal by Kahn 
et al. (2020) and Kahn et al. (2018) to teach deep learning, 
image classification, and speech synthesis with program-
ming language Snap! is hardly suitable for children, due to 
its complicated technical terminology and implementation. 

Introductory activities around reinforcement and unsu-
pervised learning are rare. Michaeli, Seegerer, and Romeike 
(2020) conducted a case study introducing unsupervised 
machine learning with the learning vector quantization al-
gorithm. However, the block-based approach used in the 
study is complex and targets high-school students. Some 
case studies have focused on teaching Q-learning as one of 
the reinforcement learning algorithms (Jatzlau et al. 2019; 
Toivonen, Jormanainen, and Tukiainen 2017). Again, these 
activities are aimed at undergraduate and high-school stu-
dents and do not apply to younger children. 

Blocks and Robots 
Kahn and Winters (2017) and Jatzlau et al. (2019) argue that 
a block-based approach is child-friendly, intuitive, and 
straightforward. The use of blocks provides the user with 

easy access and low barriers to entry into programming ap-
plications (Druga 2018; Kahn et al. 2020). However, the use 
of blocks does not necessarily imply the simplification of 
the content itself. Although blocks may be used to introduce 
complex topics, the representation of the algorithms pro-
posed by Kahn and Winters (2017) and Jatzlau et al. (2019) 
is not suitable for young children, due to its complicated vo-
cabulary and numerous technical details. 

There have been few attempts to implement robots in the 
classroom to teach young children about machine learning. 
Their success and effectiveness have been demonstrated in 
a small number of case studies with kindergarten and pri-
mary-school students (Druga et al. 2018; Williams, Park, 
and Breazeal 2019; Williams et al. 2019; Lin et al. 2020). 

Simulation and Modeling 
Robot simulators are as beneficial to the learning process as 
the operation of the real robot (Papert 1993). Simulators 
even have a decisive advantage – the time required for code-
test-debug loops is considerably less than working with real 
robots (Dodds et al. 2006). 

Simulation is an activity that actively engages with mod-
els, and it contains significant learning potential. In the cur-
rent view of modeling as pragmatic processes with signifi-
cant epistemological potential (Gelfert 2016; Ciula et al. 
2018), active engagement with models, or “imaginary con-
creta” (Godfrey-Smith 2009: 108), has significant potential 
in research as well as in learning (Nersessian 2008). Indeed, 
simulation is a core concept with which computer games can 
be understood; it is creative confrontation with a narratolog-
ical understanding (Aarseth 1998).  

One finds experimental, playful, and practical problem 
solving in many computer games as well as in the long his-
tory of gaming and play (Salen et al. 2004; Flanagan 2009). 
It has significant untapped potential in a wide area of appli-
cations, from flight simulators to the recent growth in gam-
ification. We believe that the bottom-up approach in our re-
search, where a basic understanding of practical cybernetics 
is used to establish the basis for machine learning, provides 
a robust foundation for further development of teaching 
methodologies grounded in creative and playful modeling 
based on simulation systems. 

Methodology and Curriculum Design 
Considering the shortcomings of current approaches, we 
propose a curriculum for introducing machine learning with 
simulated robots and the visual programming language 
NEPO. 

We build on the two “big ideas” of AI – perception and 
learning (Touretzky et al. 2019) – as practical guidance for 
designing AI curricula. Students are expected to create ap-
plications with simulated robots. This helps them to 
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understand perception as a process in which sensors are used 
to extract data from the environment. At the same time, they 
immerse themselves in the challenges of supervised, unsu-
pervised, and reinforcement learning by training neural net-
works and interacting with underlying algorithms. 

We also took inspiration from the “Four P’s of Creative 
Learning” (Resnick and Robinson 2017) as a modern frame-
work that engages students in creative learning experiences. 
We strive to incorporate their ideas of playful learning (Pa-
pert 1993; Resnick and Robinson 2017; Resnick and Silver-
man 2005) into our extensions wherever possible. Although 
we designed some structured activities, such as Neural Net-
work and Reinforcement Learning Cards, to help learners 
get started, our aim is that they serve as a stepping stone and 
not a final destination. We want to enable the participants to 
play with machine learning technologies and make some-
thing that interests them, following the ideas of construc-
tionism (Queiroz et al. 2020; Michaeli, Seegerer, and Ro-
meike 2020; Papert and Harel 1991). 

We modified the design principal of embodied interaction 
(Long and Magerko 2020), by virtually putting the student 
in “the agent’s shoes.” Learners should immerse themselves 
in the behavior of the simulated robot. Doing so allows them 
to look behind the scenes and thus promotes transparency 
(Long and Magerko 2020) – another principle toward ex-
plaining AI. 

We also based our approach on the principle of “low 
floors and wide walls” to accommodate children across var-
ious education and skill levels (Resnick and Silverman 
2005). We have made it as easy as possible to get started 
with the extensions, while designing opportunities for stu-
dents to dive deeper into the work on the topics. To this end, 
we took inspiration from the graphic design and storytelling 
of children’s books. We followed the principles described 
by Castella (2018) in keeping our extensions and materials 
appealing and straightforward: Designs for children have to 
cater to everyone and leave room for exploration. 

The entire curriculum consists of four thematic modules 
and lasts around 360 minutes, which the teacher can shorten 
or extend as needed.  

Module 1, “How does your robot learn?,” introduces chil-
dren to the three paradigms of machine learning: supervised, 
unsupervised, and reinforcement learning (Russell and 
Norvig 2016). The children discuss two experiments pro-
posed by Braitenberg, “Fear” and “Love” (Braitenberg 
1986), which the facilitator performs with a robot in the 
front of the class. We chose these experiments because they 
are a simple entry point into the questions of what intelli-
gence is and how it relates to learning. After the discussion, 
the facilitator holds a short input lecture that introduces ma-
chine learning. 

In Module 2, “Teaching your robot,” the children teach 
the robot various behaviors through direct supervision. They 
create simple neural networks by composing short programs 

in the Open Roberta Lab. When they start the program on 
the simulated robot, the program is compiled, and a neural 
network is created. They can now train the neural network 
by modifying the weights and observing the results directly 
from the behavior of the robot. The process of adjusting the 
weights until the robot behaves as desired is what we mean 
by direct supervision – the students are involved in the train-
ing process of the neural network and imitate it by manually 
adjusting the weights. As the children receive immediate 
feedback from the configuration of the network, they begin 
to understand how the robot learns. Immersing themselves 
in the training process allows them to focus on the underly-
ing processes of supervised learning. At the same time, the 
children discover hands-on components of neural networks, 
such as nodes, layers, links, and weights. They can start with 
the Neural Network Cards, but they are then encouraged to 
explore and test the limits of what they can teach to the ro-
bot. 

In Module 3, “Let your robot learn from experience,” the 
children explore the Q-learning algorithm using the Open 
Roberta Lab and analyze how a robot learns through re-
wards. We chose Q-learning, because it is a simple model-
free algorithm that has already been tested with children, 
and it is suitable for use in schools (Jatzlau et al. 2019). The 
children can create unique learning environments for the ro-
bot and experiment with the parameters of the algorithm. 
After they start the program on the robot, they observe and 
analyze the learning and reasoning process step by step with 
the Q-learning Playground. They may experience cases in 
which the robot fails to learn and finds no way out, and they 
can then correct the algorithm in the next iteration. 

Finally, in Module 4, “Can robots learn autonomously?,” 
the children are introduced to the k-means algorithm through 
unplugged activities. The facilitator leads a discussion on 
how the robot would group the objects on the table without 
any previous knowledge. He or she then sorts the items ac-
cording to the k-means algorithm, without explaining what 
criteria was used for the grouping. The children are encour-
aged to make guesses. After discussing the grouping criteria 
and explaining the sorting principles, the students group the 
items themselves and let others guess their criteria. This ac-
tivity aims to introduce them to cluster analysis and what it 
means to be in a group. 

Extensions Design and Learning Materials 
We designed our machine learning playgrounds based on 
the Open Roberta Lab, a visual block-based open-source 
programming platform. We chose this coding platform due 
to its focus on teaching programming with robots and its ad-
vanced ecosystem, including a robot simulation (Ketterl et 
al. 2015; Jost et al. 2014). We extended the platform with 
two playgrounds for the simulated LEGO EV3 robot. 
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Figure 1. Block for setting up the learning behavior 

First, we extended the block categories in the Open Rob-
erta Lab with the new category of AI consisting of two sub-
categories: Neural Networks and Reinforcement Learning. 
For Neural Networks, we defined 10 new blocks: 
•  Neural network has two openings for the input and output 

layers. Technically, we included the case that the user can 
extend the block with hidden layers. However, the current 
block does not yet represent this graphically. 

•  Neuron is a block with a list in the backend where the user 
can plug in different types of input and output nodes. 
There is no limit to the number of neurons in a layer. 

•  Input and output nodes, enable the user to plug in the ul-
trasonic and the color sensors in light, RGB, and color 
modes as the neurons of the input layer. In the output 
layer, the user can plug in motor, LED, text, and sound. 
For the subcategory of Reinforcement Learning, we im-

plemented four new blocks, for which we adapted the ap-
pearance of the algorithm concerning technical vocabulary 
to make the algorithm tangible. 
•  Map allows users to set up the environment for the Q-

learning algorithm. 
•  Learning behavior configures the parameters for the Q-

learning algorithm. Figure 1 shows how users see the 
block. It is an example of how we have adapted the tech-
nical vocabulary of the Q-Learning algorithm for young 
students. The first parameter is Alpha, the second is 
Gamma, the third is Rho, and the fourth is Nu. 

•  Gain experience initializes the Q-learning Playground, 
where the children can specify the duration in seconds and 
the number of episodes. 

•  Draw optimal path draws the way for the robot to exit the 
labyrinth. 
Second, we implemented two machine learning play-

grounds. In the Neural Network Playground, the students 
experiment with direct supervision by adjusting the weights 
of the network. The Q-learning Playground promotes the 
transparency of the learning process and allows the users to 
start or stop the execution of the algorithm. They can also 
debug the algorithm step by step. 

Figure 2 demonstrates the Neural Network Playground on 
the left and the simulation of the robot on the right. The input 
layer has two input neurons, which are ultrasonic sensors 
connected to ports 2 and 3. The output layer consists of two 
neurons (i.e., motors connected to ports b and c). If the user  

Figure 2. Neural Network Playground 

adjusts weights now, the robot immediately changes its be-
havior. In Figure 2, the weight between the first input and 
first output neuron is set to 1. It means that the value of ul-
trasonic sensor at port 2, which is currently 60, is completely 
transferred to motor at port b. Consequently, motor at port b 
rotates at a speed of 60. The same applies to the ultrasonic 
sensor at port 3 and the motor at port c. Such configuration 
of the neural network results in the following behavior of 
the robot: the closer the robot is to the object, the lower the 
value of the two ultrasonic sensors, and the slower the cor-
responding rotations of the motors. 

We created eight Neural Network cards to introduce the 
user to direct supervision and neural networks. Figure 3 
shows the learning card “Incognito.” 

 

 Figure 3. Neural Network Card “Incognito” 
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All the cards are similarly structured. On the front side, 
we describe the task and provide hints. Here, for instance, 
we show the new blocks that the learner needs and explain 
why the robot will attempt to drive onto the white area. On 
the back, we offer the solution for the program and our con-
figuration of the neural network. 

The vehicles proposed by Braitenberg (1986) were our in-
spiration for the cards. Hence, we adapted two scenarios: 
“Fear” teaches the robot to be “afraid” of obstacles, while 
“Friendship” instructs it to be friendly. We added six further 
examples: (1) Chameleon – Teach the robot to adapt itself 
to the environment, (2) Incognito – Teach the robot to avoid 
bright places, (3) Attention – Educate the robot on the traffic 
rules, (4) Loud Distance – Instruct the robot to measure the 
distance to the obstacle out loud, (5) Interest – Let the robot 
explore the landscape, and (6) Rally – Enable the robot to 
master the colored curves. 

Figure 4 demonstrates the Q-Learning Playground. After 
the learner has created a program using the blocks and trans-
ferred it to the robot, the Q-Learning Playground is gener-
ated dynamically. The environment reflects the parameters 
that the user has set in the reinforcement learning blocks. On 
pressing the start button, the user starts the learning process, 
which can be observed in the navigation bar at the top and 
on the map. After the learning is finished, the optimal path 
out of the labyrinth is drawn, and the robot can now follow 
it. Figure 4 shows the last step, where the robot follows the 
optimal path. 

We accompanied the Q-learning Playground with the ma-
terials, such as the Q-learning cards (on which the user can 
take notes), a Q&A, block descriptions, and a flow diagram 
on how Q-learning works. The materials developed aim to 
make the Q-learning algorithm tangible even for young 
learners. 

For the unplugged activity that introduces the k-means al-
gorithm, the facilitator only needs a set containing some ob-
jects and different colored Post-its. We assembled our col-
lection from various drinking vessels and containers. 

 

Figure 4. Q-Learning Playground 

 The facilitator sticks Post-its on a portion of the random 
items that serves as the cluster centers. The remaining ob-
jects in the set are then compared with each cluster center 
based on a criterion known only to the facilitator. After com-
paring each item with the cluster centers, the facilitator 
places the object behind the one cluster center that he or she 
thinks is the best fit. The version of the k-means algorithm 
that we performed with the children was simplified. It com-
prised only the first stage of the algorithm without post-clus-
tering. However, it can be easily incorporated into the ex-
periment. 

User Study 
We tested whether the learning experience with the exten-
sions developed for machine learning promotes the chil-
dren’s understanding of the underlying concepts of the sub-
ject. In particular, we evaluated how interesting and how dif-
ficult the students found the individual topics. We also asked 
the children what they thought AI and machine learning 
were, both at the beginning and the end of the session. In 
addition, we questioned their motivation to continue work-
ing on machine learning. 

Method 
Participants 
Our aim in developing the extensions and teaching materials 
is to reach children of different ages and with no prior 
knowledge in machine learning. Therefore, we conducted a 
case study with students in various age groups. Twenty-four 
children participated in the study (Grades 3–4: four boys and 
five girls; 5–6: six boys and one girl; 7–9: seven boys only). 
We could not select the participants ourselves, since the ses-
sions were organized as part of a summer-vacation program 
and had to be staffed on a “first come, first serve” basis. 
Some participants attended the session on their parents’ rec-
ommendation and were initially not enthusiastic about the 
workshops. The facilitator was informed that some of the 
students have special needs. 

We held three sessions in total, one per day. Each session 
lasted six school hours (45 minutes) and was conducted in a 
block with short breaks. On the first day, we tested the ex-
tensions with the high-school students in Grades 7–9 (G1), 
on the second day with the primary-school students in 
Grades 3–4 grades (G2), and on the third day with the mid-
dle-school children in Grades 5–6 (G3). All the children had 
prior knowledge of working in the Open Roberta Lab with 
real LEGO EV3 robots, as they had participated in an intro-
ductory session on the previous day. 
Procedure 
In each session, we followed the modules as described in the 
“Methodology and Curriculum Design” section. We de-
signed our presentation and instructions with a strong focus 

15634



on the younger students and used them for all the age 
groups. First, we informally pre-assessed the knowledge of 
the children on machine learning and AI. We then com-
pleted the modules in order. At the end, the children filled 
out short questionnaires. On the second and third day, we 
changed the order of the modules, because the experiences 
from the first day indicated that reinforcement learning was 
too difficult to be tackled in the afternoon; the concentration 
of the students was lower in the afternoon than in the morn-
ing. We recorded the sessions, and an observer logged the 
activities for all three days. 
Limitations 
Since we could not influence the composition of the partic-
ipant groups, we were not able to balance them by gender. 
We also could not collect detailed information about the 
background of each participant.iii Due to measures against 
coronavirus disease (COVID–19), we had two organiza-
tional restrictions: (1) Only a small number of children could 
participate in the sessions, and (2) the students were not al-
lowed to work in groups. Therefore, we had to limit all ac-
tivities to individual work. 

In terms of content, we restricted the Q-learning environ-
ments to three maps and allowed the students to set as many 
obstacles as they wanted. This was necessary for obtaining 
comparable results at the end. However, our design does al-
low students to create and upload environments on their own 
under certain conditions.  

We did not systematically examine whether our approach 
was effective in terms of measuring knowledge growth 
among students after each activity. Instead, we aimed to in-
vestigate how the students perceived the topics and whether 
they were able to cope with the complexity of the content. 
Future studies will focus on testing effectiveness, with more 
participants, a better gender balance, and diversity in terms 
of socioeconomic background. 

Questionnaire 
We were interested in the children’s perception of the topics. 
Our goal was to understand how the children felt about the 
approaches and whether they had difficulty understanding 
them. On this basis, we developed a questionnaire with six 
items, based on a five-point semantic differential scale. We 
chose the semantic differential scale, because it enables 
quick measurement of attitudes and performs well with few 
items (Salkind 2006). Our items were: (1) How interesting 
did you find the topic “Supervised Learning and Neural Net-
works”? (2) How interesting did you find the topic “Unsu-
pervised Learning”? (3) How interesting did you find the 
topic “Reinforcement Learning”? (4) Was the topic “Super-
vised Learning and Neural Networks” difficult to under-
stand? (5) Was the topic “Unsupervised Learning” difficult 
to understand? (6) Was the topic “Reinforcement Learning” 
difficult to understand? 

 
Interest Score Difficulty 

very uninteresting 1 very difficult 
uninteresting 2 difficult 

neutral 3 neutral 
interesting 4 easy 

very interesting 5 very easy 

Table 1. Distribution of scores for each response 

To answer each question, the children could check a num-
ber on a scale from 1 to 5 between two pairs of adjectives: 
“very uninteresting” – “very interesting” for questions 1 to 
3 and “very difficult” – “very easy” for questions 4 to 6. We 
then coded each response from 1 to 5, as shown in Table 1. 

In order to obtain the overall attitude score 𝑟𝑒𝑠𝑝(𝐼, 𝐺)************* for 
each item 𝐼 per group of participants 𝐺, we averaged the re-
sponses 𝑟𝑒𝑠𝑝(𝐼, 𝐺) for each individual item: 

 

𝑟𝑒𝑠𝑝(𝐼, 𝐺) =
1
|𝐺|-𝑟𝑒𝑠𝑝(𝐼, 𝐺)!

!∈#

 

 
We also asked the children about their general attitude to-

ward further involvement with AI and machine learning. 
They could respond with “yes,” “maybe,” or “no.” Further-
more, we invited them to provide written feedback (one sen-
tence) about what they took with them from that day. 

Results 
Table 2 demonstrates the students’ responses to the question-
naire items, and Figure 5 presents the responses graphically. 
The x-axis illustrates the absolute number of responses. The 
y-axis shows three topics divided by grade level. The first 
module is not considered, because it was only an introduc-
tory unit. Each bar of the diagram is aligned with the red 
dotted line that visually separates the responses with high 
scores (4–5) from the ones with lower scores (1–3). 

Perception of Supervised Learning 
The topic of supervised learning (Module 2) was the most 
difficult one for primary-school children, with an average 
score of 3.3. Children in middle school perceived it to be 
easy, with an average score of 4.0, as did the high-school 
students with 4.0. The middle-school students also found the 
topic of supervised learning to be the most interesting, com-
pared to other groups. The average score here for fifth and 
fourth graders was 4.58, followed by third and fourth grad-
ers with 4.3 and sevens to ninth graders with 4.0. 

The observations suggest that children of all grades were 
engaged and motivated by tinkering with neural networks 
and teaching the robot through direct supervision. 
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Figure 5. Attitudes of the participants in Grades 7–9 (G1), 
3–4 (G2), and 5–6 (G3) toward the topics of supervised 

(SL), reinforcement (RL), and unsupervised learning (UL) 

Most of the children completed only the task with the 
Neural Network cards. Few of them then had time to tinker 
with the applications based on their ideas. The feedback 
from the students in high and middle school was that the ex-
planations were easy to follow. They also recommended im-
proving some points of the user experience, such as the de-
sign of the playgrounds and the button locations. 

Perception of Reinforcement Learning 
Participants in all the age groups found the topic of rein-
forcement learning based on Q-learning (Module 3) neutral 
to very interesting. The average score of participants in 
Grades 3-4 was 4.4, and those of high-school students was 
4.14. The middle-schoolers found the topic to be the most 
interesting, with an average score of 4.42. However, at the 
same time, they found reinforcement learning most chal-
lenging, with an average score of 3.42 for difficulty. High-
school children perceived the topic to be more difficult than 
the primary-school students did (with 4.0 and 4.2 points, re-
spectively). 

The observer stated that each age group spent very differ-
ent amounts of time creating the learning environments. 
Some children spent much time creating increasingly 

difficult environments, while others were more interested in 
testing. The older children had less motivation to carry out 
the experiments, and they were often more distracted than 
the middle- and primary-school students. 

Perception of Unsupervised Learning 
The middle-school students showed the greatest interest in 
the topic of unsupervised learning (Module 4) introduced by 
the unplugged activity, with an average score of 4.14. The 
lowest interest came from high-schoolers with 3.71, fol-
lowed by primary-school children with 4.0. The average 
score for difficulty varied from easy to very easy in all three 
groups: 4.4 for primary-school, 4.14 for middle-school, and 
4.28 for high-school students. 

The observer noticed that the children were attentive 
when the facilitator conducted the experiment. They also ac-
tively participated in the discussion about the experiment af-
terward. 

Student Motivation and Feedback 
Of all the participants, 75% responded that they would con-
tinue to work on the topics, and 25% indicated that they 
might want to continue. One participant remarked: “I didn’t 
like the topic with supervised learning so much, because I 
have a feeling that the tasks could also be solved with ‘if-
then’ queries.” Overall, however, we felt that the children 
had enriching sessions. One participant explained his expe-
riences with reinforcement learning: “I found reinforcement 
learning very interesting, mainly because it improves by 
checking which way is the better one. […] AI is a bit more 
complicated than I thought, is really something that big ... 
can be tricky.” Another participant reflected on his experi-
ences with supervised and reinforcement learning and 
pointed out the moment when the robot could not find its 
way out despite its knowledge: “So, I take it from this day... 
I take all these ways with me […] I still can’t describe […], 
but it’s in any case, it’s independence and that the [robot] 
can do something by himself without help, yes and also as 
an example he can say ‘no,’ which everybody is afraid of.” 

  Supervised Learning Reinforcement Learning Unsupervised Learning  
Score 1 2 3 4 5  1 2 3 4 5  1 2 3 4 5  
Interest |𝐺|  𝑟𝑒𝑠𝑝(1, 𝐺) SD 𝑟𝑒𝑠𝑝(3, 𝐺) SD 𝑟𝑒𝑠𝑝(2, 𝐺) SD 
G1 Grades 7–9 7 1 0 1 1 4 4.0 1.52 1 0 0 2 4 4.14 1.67 1 0 2 1 3 3.71 1.14 
G2 Grades 3–4  10 1 0 1 1 7 4.3 2.83 0 0 2 2 6 4.4 2.45 0 1 1 5 3 4.0 2.0 
G3 Grades 5–6 7 0 1 0 0 6 4.58 2.61 0 0 1 2 4 4.42 1.67 0 0 2 2 3 4.14 1.34 
Difficulty |𝐺| 𝑟𝑒𝑠𝑝(4, 𝐺)	 SD	 𝑟𝑒𝑠𝑝(6, 𝐺) SD 𝑟𝑒𝑠𝑝(5, 𝐺) SD 
G1 Grades 7–9 7 0 0 2 3 2 4.0 1.34 0 0 2 3 2 4.0 1.34 0 1 0 2 4 4.2 1.67 
G2 Grades 3–4 10 1 2 2 3 2 3.3 0.71 0 1 1 3 5 4.2 2.0 1 0 0 2 7 4.4 2.92 
G3 Grades 5–6 7 0 1 1 2 3 4.0 1.14 1 0 2 3 1 3.42 1.14 0 1 0 3 3 4.14 1.52 

Table 2. Students’ responses to questionnaire items 1–6 
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Discussion 
By experimenting with the playgrounds and completing the 
four modules, children from primary to high school experi-
enced the technical part of machine learning in practice. 
They taught the robot by training simple neural networks 
and explored how the robot can learn with rewards by ex-
perimenting with the Q-learning algorithm. They also famil-
iarized themselves with unsupervised learning by exploring 
the k-means algorithm unplugged.  

We demonstrated that our approach to introducing super-
vised, unsupervised, and reinforcement learning could raise 
the interest of students and be accessible even to young chil-
dren. We include considerations for future approaches to 
teaching machine learning with robots and playfulness. 

Introduce playfulness to machine learning extensions. 
We created engaging learning materials and neatly kept ex-
tensions, so that young students could immerse themselves 
in the machine learning topics. This approach, as described 
in “Methodology and Curriculum Design,” was even well 
received by the young students. Although one of our objec-
tives was to give the children more room for experimenta-
tion, this was only partly achieved. We observed that most 
students experimented with the underlying processes and al-
gorithms based on the materials we provided. Only some 
students who were faster than others, and thus had time to 
work further on their projects, created more complicated 
learning environments or more complex network architec-
tures. Therefore, tinkering with their projects should be ex-
panded and emphasized in the future. 

Let the robot learn and allow it to make mistakes. By 
teaching the simulated robot and experiencing the environ-
ment from the agent’s perspective, the students gained in-
sights into how the robot perceives the environment and how 
it learns. They also deepened their mental models of the ca-
pabilities and limitations of different machine learning ap-
proaches. The children were engaged in researching why the 
robot did not learn properly and why it could not find its way 
out from the labyrinth. They also wished to “train” the neu-
ral network so that the robot behaves correctly. We made a 
similar observation as Lin et al. (2020) that the robot’s errors 
can be used to demonstrate that the agents are trainable and 
that they are not perfect. 

Focus the design on the youngest students, and accom-
modate the older ones at the same time. Inspired by chil-
dren’s books on machine learning topics, we designed our 
materials and extensions with young students in mind. We 
adapted the topics in terms of technical vocabulary by refor-
mulating the descriptions into the story-like narratives and 
revising the terminology. For visual communication, we 
used comics, hand drawings, and colorful illustrations. Both 
primary- and high-school students found the design of the 
extensions and materials appealing. This method of present-
ing complicated content can be used in the future. 

Conclusion and Future Work 
In this work, we presented our approach to the introduction 
of machine learning using robots, oriented towards playful 
learning and a child-centered design. The vast majority of 
children in all three age groups perceived the topics as ex-
citing and easy to follow, and they expressed the intention 
to learn more about AI and machine learning. We promoted 
transparency in the underlying processes and algorithms by 
providing extensions of the Open Roberta Lab that reveal 
the machine learning algorithms. Although the extensions 
can be easily operated via the Open Roberta Lab interface, 
the critical complexity of the underlying processes is not 
lost. All three age groups could teach the robot different be-
haviors in the Neural Network Playground by exploring the 
basic principles of supervised learning. They also explored 
reinforcement learning step by step with the Q-learning 
Playground. For unsupervised learning, we adapted the k-
means clustering algorithm, and the children explored it un-
plugged. Overall, modeling and practical simulation created 
more playfulness and fun in learning, without making the 
learning process less demanding and enriching. 

We evaluated the children’s perception of the proposed 
machine learning topics. The results indicate that the vast 
majority of the students found the topics engaging and easy 
to follow. We intend to test their understanding and the ef-
fectiveness of our extensions in the future. 

We also aim to implement more open activities, so that 
children have more space to explore and experiment. In ad-
dition, we hope for more collaboration activities between 
the students, as this was not possible due to the limitations 
of COVID-19. We plan to integrate clustering into the robot 
simulation environment of the Open Roberta Lab and to mi-
grate all the extensions from simulated to real robots. 
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